JOURNAL OF APPROXIMATION THEORY 61, 384–386 (1990)

On a Discrete Korovkin Theorem

GEORGE A. ANASTASSIOU

Department of Mathematical Sciences, Memphis State University, Memphis, Tennessee 38152

Communicated by Oved Shisha

Received March 11, 1988

In [G. A. Anastassiou, A discrete Korovkin theorem, J. Approx. Theory 45 (1985), pp. 383–388, Theorem 3], a discrete Korovkin theorem was given. We restate the theorem here and its proof, correcting a mistake in the above reference. \bigcirc 1990 Academic Press, Inc.

RESULTS

Our main result is the following

THEOREM 1. Let $X = \{x_1, ..., x_j, ...\}$ be a set. Consider B(X), the space of real valued bounded functions on X with the supremum norm $\|\cdot\|_{\infty}$, and a sequence of positive linear operators $L_n: B(X) \to B(X)$ such that $L_n(1, x_j) = 1$ for all j. Suppose that, for some $f_1, ..., f_k \in B(X)$,

$$\lim_{n \to \infty} L_n(f_i, x_j) = f_i(x_j) \quad \text{for all } i \text{ and } j.$$
(1.1)

In order that $L_n(f, x_j) \rightarrow f(x_j)$ for all $f \in B(X)$ and all j, it is enough to assume that for each j there are real constants $\beta_1, ..., \beta_k$ such that

$$\sum_{i=1}^{k} \beta_i (f_i(x) - f_i(x_j)) \ge 1 \quad \text{for all} \quad x \in X - \{x_j\}.$$
(1.2)

We need the following

LEMMA 2. Let $X = \{x_1, ..., x_j, ...\}$ be a measurable space, $1 \le p < \infty$, and let μ be a finite positive measure on X such that $\mu(\{x_j\}) > 0$ for all j. Let B(X) be as above, and let $f, f_1, f_2, ... \in B(X)$, where all $||f_n||_{\infty} < c$, $0 < c < \infty$. Then $f_n \to f$ pointwise on X iff $f_n \to f$ in $L_p(X, \mu)$.

Proof of Lemma 2. (\Rightarrow) By the uniform boundedness of f_n , as $\mu(X) < \infty$, we obtain $|f_n|^p \le c^p \in L_1(X, \mu)$. Since $f_n \to f$ pointwise, by a variation of the dominated convergence theorem (see [3, p. 180]), we get $f_n \to f$ in $L_p(X, \mu)$. Note $B(X) \subseteq L_p(X, \mu)$.

(\Leftarrow) The L_p convergence implies weak convergence, the indicator function $I_{\{x_j\}} \in L_q(X, \mu)$ where (1/p) + (1/q) = 1, and $\mu(\{x_j\}) > 0$. Hence the pointwise convergence.

Next is an independent L_p result which will be used in the proof of Theorem 1.

PROPOSITION 3. Let $X = \{x_1, ..., x_j, ...\}$ be a set. Let $w(x_j) > 0$ for all jand $\sum_{j=1}^{\infty} w(x_j) < \infty$. Let B(X) be as above, and let L_n be a sequence of positive linear operators: $B(X) \rightarrow B(X)$ such that $L_n(1, x_j) = 1$ for all j. Suppose that, for some $f_1, f_2, ..., f_k \in B(X)$ and some $p, 1 \le p < \infty$,

$$\lim_{n \to \infty} \left(\sum_{j=1}^{\infty} |L_n(f_i, x_j) - f_i(x_j)|^p \cdot w(x_j) \right) = 0, \qquad i = 1, 2, ..., k.$$
(3.1)

In order that $\sum_{j=1}^{\infty} |L_n(f, x_j) - f(x_j)|^p \cdot w(x_j) \to 0$ for all $f \in B(X)$, it is enough to assume the following: for each j there are real constants $\beta_1, ..., \beta_k$ such that

$$\sum_{i=1}^{k} \beta_i (f_i(x) - f_i(x_j)) \ge 1 \quad \text{for all} \quad x \in X - \{x_j\}.$$
(3.2)

Proof of Proposition 3. The weight w gives rise to a positive finite measure μ on X with $\mu(\{x\}) > 0$ for all $x \in X$. Since $B(X) \subseteq L_p(X, \mu)$, (3.1) implies $||L_n(f_i) - f_i||_p \to 0$ for all *i*. If there exists $f \in B(X)$ such that $||L_n(f) - f||_p \to 0$, then there is *j* and a positive ε so that

$$|L_n(f, x_i) - f(x_i)| > \varepsilon$$
 for all $n \ge \text{some } n_0$.

Because each positive linear functional $L_n(\cdot, x_j)$ on B(X) is bounded, by a basic representation theorem, for each specific $j = j_0$ as above, there exists $g_{j_0,n} \in L_q(X, \mu)$, where (1/p) + (1/q) = 1, such that

$$L_n(f, x_{j_0}) = \int_X f(x) \cdot g_{j_0, n}(x) \cdot \mu(dx) \quad \text{for all} \quad f \in B(X).$$

As $L_n(1, x_{j_0}) = 1$, the positivity of $L_n(\cdot, x_{j_0})$ implies $\int_X g_{j_0,n}(x) \cdot \mu(dx) = 1$ and $g_{j_0,n}(x) \ge 0$ for all $x \in X$. Thus

$$\varepsilon < |L_n(f, x_{j_0}) - f(x_{j_0})|$$

$$= \left| \int_{X - \{x_{j_0}\}} (f(x) - f(x_{j_0})) \cdot g_{j_0, n}(x) \cdot \mu(dx) \right|$$

$$\le ||f - f(x_{j_0})||_{\infty} \cdot \left(\int_{X - \{x_{j_0}\}} \cdot g_{j_0, n}(x) \cdot \mu(dx) \right),$$

so

$$\int_{X-\{x_{j_0}\}} g_{j_0,n}(x) \cdot \mu(dx) > \frac{\varepsilon}{\|f-f(x_{j_0})\|_{\infty}} =: \delta > 0 \quad \text{for all} \quad n \ge n_0.$$

There cannot be real constants $\beta_1, \beta_2, ..., \beta_k$ with

$$\sum_{i=1}^{k} \beta_i \cdot (f_i(x) - f_i(x_{j_0})) \ge 1 \quad \text{for all} \quad x \in X - \{x_{j_0}\}.$$

Since, otherwise, we would have

$$\sum_{i=1}^{\kappa} \beta_i \cdot (f_i(x) - f_i(x_{j_0})) \cdot g_{j_0,n}(x) \ge g_{j_0,n}(x),$$

for all $x \in X - \{x_{i_0}\}$, and therefore

$$\sum_{i=1}^{k} \beta_{i} \cdot \int_{X-\{x_{j_{0}}\}} (f_{i}(x) - f_{i}(x_{j_{0}})) \cdot g_{j_{0},n}(x) \cdot \mu(dx)$$
$$\geq \int_{X-\{x_{j_{0}}\}} g_{j_{0},n}(x) \cdot \mu(dx).$$

(Note that $L_n(f_i, x_{j_0}) = \int_X f_i(x) \cdot g_{j_0,n}(x) \cdot \mu(dx)$, i = 1, ..., k.) Consequently, since $L_n(f_i, x_{j_0}) \rightarrow f_i(x_{j_0})$, i = 1, ..., k, we would get

$$0 = \lim_{n \to \infty} \left(\sum_{i=1}^{k} \beta_i \cdot (L_n(f_i, x_{j_0}) - f_i(x_{j_0})) \right) > \delta > 0.$$

Proof of Theorem 1. Note that $B(X) \subseteq L_p(X, \mu)$ for every $p \in [1, \infty)$, and every finite measure μ on X for which each $\mu(\{x_j\}) > 0$. By Lemma 2, the pointwise convergence $L_n(f_i, x_j) \to f_i(x_j)$, i = 1, ..., k, for all j, is equivalent, for such p and μ , to the convergence in $L_p(X, \mu)$ of $L_n(f_i)$ to f_i , i = 1, ..., k. Furthermore, this measure μ can serve as a weight function on X. Thus Proposition 3 implies our theorem.

References

- 1. G. A. ANASTASSIOU, A discrete Korovkin theorem, J. Approx. Theory 45 (1985), 383-388.
- E. HEWITT AND K. STROMBERG, "Real and Abstract Analysis," Springer-Verlag, New York/ Berlin, 1965.
- 3. J. F. C. KINGMAN AND S. J. TAYLOR, "Introduction to Measure and Probability," Cambridge Univ. Press, London, 1966.